Resonance zones for interactions of magnetosonic waves with radiation belt electrons and protons

نویسندگان

  • Wenxun Zhang
  • Ruoxian Zhou
  • Juan Yi
  • Xudong Gu
  • Binbin Ni
  • Chengyao Zheng
  • Man Hua
چکیده

As an important plasma wave mode in the geospace, magnetosonic waves can interact with both radiation belt electrons and protons, thereby impacting the dynamics of magnetospheric particles. Based on the Doppler-shifted resonance condition and the cold plasma dispersion relation, we investigate the profiles of resonance zone and resonant frequency of the Landau resonance between radiation belt electrons and magnetosonic waves and the cyclotron resonances with protons. The results demonstrate that resonant interactions between magnetosonic waves and magnetospheric charged particles largely rely on L-shell, wave normal angle, and kinetic energy and equatorial pitch angle of particles. Resonance zones for the Landau resonance between magnetosonic waves and radiation belt electrons are confined to a very narrow (mostly less than 1°) extent of magnetic latitude, which tends to shift to lower latitudes with increasing equatorial pitch angle and decreasing electron energy. Landau resonance frequencies also increase with magnetosonic wave normal angle. In contrast, higher order cyclotron resonances of magnetosonic waves with protons are much easier to occur in a broad range of magnetic latitude. As the resonance order increases, the coverage of the resonance zone shrinks overall and occupies the geomagnetic equatorial region. In addition, resonant frequencies increase with resonance order. Corresponding to higher order cyclotron resonances, protons are more likely to interact with magnetosonic waves at intermediate to high frequencies. Our study can be useful to elaborate the resonant interaction processes between magnetosonic waves and radiation belt electrons and protons and improve the current understanding of the multi-aspect impact of magnetosonic waves on the magnetospheric particle dynamics.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Introduction to the thematic series “Coupling of the magnetosphere–ionosphere system”

This thematic series contains 4 papers mostly presented at the 2016 AOGS meeting in Beijing. The four papers investigate four key regions in the magnetosphere–ionosphere coupling process: mid-tail magnetosphere, near-Earth magnetosphere, inner magnetosphere, and the polar ground region. Guo et al. (Geosci Lett 4:18, 2017) study the current system in reconnection region using 2.5D particle-in-ce...

متن کامل

Ultra-low-frequency wave-driven diffusion of radiation belt relativistic electrons

Van Allen radiation belts are typically two zones of energetic particles encircling the Earth separated by the slot region. How the outer radiation belt electrons are accelerated to relativistic energies remains an unanswered question. Recent studies have presented compelling evidence for the local acceleration by very-low-frequency (VLF) chorus waves. However, there has been a competing theory...

متن کامل

Cosmic ray acceleration by fast magnetosonic waves

Recently, Schlickeiser and Miller have calculated anew the acceleration rate of cosmic rays by fast magnetosonic plasma waves in a small-beta plasma, using a linear dispersion relation. They found that the transit-time damping of fast mode waves provides the dominant contribution to the stochastic acceleration rate of cosmic ray particles, both, in pure fast mode wave turbulence as well as in a...

متن کامل

Scattering of magnetic mirror trapped fast electrons by a shear Alfvén wave.

Laboratory observations of enhanced loss of fast electrons trapped in a magnetic mirror geometry irradiated by shear Alfvén waves (SAW) are reported. A population of runaway electrons generated by second harmonic electron-cyclotron-resonance heating, as evidenced by the production of hard x rays with energy up to 3 MeV, is subjected to SAW launched with a rotating magnetic field antenna. It is ...

متن کامل

Jovian, Solar, and other Possible Sources of Radiation Belt Particles

It is well known that electrons, protons, and heavier ions can be accelerated to high energies (~1 MeV) throughout the solar system by a variety of mechanisms. We review several of the sources of energetic ions and electrons that can produce enhanced fluxes of particles near the Earth's orbit. Solar energetic particles and particles accelerated at interplanetary shock waves are considered. We a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017